Skip to content

The project is a Python implementation of a recommendation system using Collaborative Filtering, a technique for making personalized recommendations by analyzing the preferences and behavior of users. The system analyses user and movie data to provide accurate suggestions to users based on predictions made by the model.

License

Notifications You must be signed in to change notification settings

AvichalS/Recommendation-System

Repository files navigation

Recommendation-System

This code implements a recommendation system using collaborative filtering. It begins by importing necessary libraries and loading movie rating data. Exploratory analysis is performed on the data to determine the number of ratings, unique users, and movies, as well as the distribution of movie ratings. The Bayesian average method is used to address the "cold start" problem and make more accurate movie recommendations. The code also includes genre analysis and data pre-processing to generate a sparse matrix from the rating data. The sparsity of the matrix is evaluated, and normalization is performed before the final recommendation model is built.

  1. The first part of the code loads and performs an exploratory analysis of the data.
  2. The second part pre-processes the data for modelling by creating a sparse matrix and performing a train-test split.
  3. The third part of the code implements a model to make movie recommendations based on user input. The model calculates the cosine similarity between movies and returns the top-k most similar movies as recommendations.

About

The project is a Python implementation of a recommendation system using Collaborative Filtering, a technique for making personalized recommendations by analyzing the preferences and behavior of users. The system analyses user and movie data to provide accurate suggestions to users based on predictions made by the model.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages