MS-TCNet: An effective Transformer–CNN combined network using multi-scale feature learning for 3D medical image segmentation
git clone https://github.com/AustinYuAo/MS-TCNet.git
cd MS-TCNet
conda env create -f environment.yml
source activate MS-TCNet
1.Download
Synapse dataset download
ACDC dataset download
MSD BraTS dataset download
- your dataset folders should be organized as follows:
├── dataset/
├── Synapse/
├── imagesTr/
├── imagesTs/
├── labelsTr/
├── labelsTs/
├── dataset.json
├── ACDC/
├── imagesTr/
├── imagesTs/
├── labelsTr/
├── labelsTs/
├── dataset.json
├── MSD BraTS/
├── imagesTr/
├── imagesTs/
├── labelsTr/
├── labelsTs/
├── dataset.json
You can refer to the corresponding JSON files for the data partitioning of each dataset. We have stored these files in the data json folder. You can also copy these files to the corresponding dataset folder for training.
python main.py --max_epochs=8000 --batch_size=2 --logdir=mstcnet_synapse --save_checkpoint --data_dir=your_dataset_dir --json_list=dataset_Synapse.json --model_name=mstcnet_synapse --workers=6
python main.py --max_epochs=8000 --batch_size=8 --sw_batch_size=4 --in_channels=1 --out_channels=4 --space_x=1.25 --space_y=1.25 --space_z=10 --roi_x=128 --roi_y=128 --roi_z=6 --logdir=mstcnet_acdc --save_checkpoint --data_dir=your_dataset_dir --json_list=dataset_ACDC.json --model_name=mstcnet_acdc --workers=6
python main.py --max_epochs=800 --batch_size=3 --sw_batch_size=2 --in_channels=4 --out_channels=3 --a_min=0 --a_max=300 --b_min=0 --b_max=1.0 --space_x=1 --space_y=1 --space_z=1 --roi_x=128 --roi_y=128 --roi_z=128 --logdir=mstcnet_brats --save_checkpoint --data_dir=your_dataset_dir --json_list=dataset_BraTS.json --model_name=mstcnet_brats --val_every=50 --workers=6
python test_synapse.py --data_dir=your_dataset_dir --json_list=dataset_Synapse.json --pretrained_dir=your_pretrained_dir --pretrained_model_name=model.pth --saved_checkpoint=ckpt
python test_acdc.py --data_dir=your_dataset_dir --json_list=dataset_ACDC.json --pretrained_dir=your_pretrained_dir --pretrained_model_name=model.pth --saved_checkpoint=ckpt
python test_brats.py --data_dir=your_dataset_dir --json_list=dataset_BraTS.json --pretrained_dir=your_pretrained_dir --pretrained_model_name=model.pth --saved_checkpoint=ckpt
@article{ao2024ms,
title={MS-TCNet: An effective Transformer--CNN combined network using multi-scale feature learning for 3D medical image segmentation},
author={Ao, Yu and Shi, Weili and Ji, Bai and Miao, Yu and He, Wei and Jiang, Zhengang},
journal={Computers in Biology and Medicine},
volume={170},
pages={108057},
year={2024},
publisher={Elsevier}
}
The code is implemented based on UNETR. We would like to express our sincere thanks to the contributors.