For detailed information about this project, including methodology, architectural diagrams, and in-depth analysis, please refer to our comprehensive documentation:
We have tested the inference on two systems. We encourage you to use either. If not, please adapt accordinly.
Instance Details:
- Instance Type: g6.2xlarge (AWS)
- Operating System: Ubuntu with Deep Learning Image
GPU Information:
- GPU Model: NVIDIA L4
- NVIDIA-SMI Version: 535.183.01
- CUDA Version: 12.2
- Total GPU Memory: 23034 MiB
Instance Details:
- Instance Type: g5.2xlarge (AWS)
- Operating System: Ubuntu with Deep Learning Image
GPU Information:
- GPU Model: NVIDIA A10G
- NVIDIA-SMI Version: 535.183.01
- CUDA Version: 12.2
- Total GPU Memory: 23034 MiB
Note: Training needs at least an A100
setup miniconda and conda env
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh
# answer yes to terms and to automatically setting up Miniconda
# reopen terminal
conda deactivate # exit from base env
conda create -n qna python=3.10
conda activate qna
install git LFS
sudo apt install git-lfs
clone repo
git clone https://github.com/Alexgichamba/itu_qna_challenge.git
cd itu_qna_challenge/
install dependencies
chmod +x install_dependencies.sh
./install_dependencies.sh
for Phi-2
python3 phi2_final_submission.py
for Falcon7B
python3 falcon_final_submission.py