PPT
RSTR Demo
RSTR DataBase
RSTR API Test
Paper
Committee member comment
- Pretrained Model(I used 3 kind of embeddings method)
- BERT(trained: wiki(WordPiece), fine tunning: single article or single storyline)
- Word2Vec-SG(Train Data: dcard mood article(Entity), yahoo and pixnet storyline(Entity))
- Word2Vec-SG(Train Data: dcard mood article(Word), yahoo and pixnet storyline(Word))
- Feature Generation
- E2V-BERT 透過產生的斷詞進行辭典過濾並得到各個 entity 在進行 relationship feature 和 scenaio feature 的產生
- E2V-W2V-SG 透過產生的斷詞進行辭典過濾並得到各個 entity 在進行 relationship feature 和 scenario feature 的產生
- W2V-W2V-SG(relationship model baseline) 單純的斷詞未經過辭典產生 word 並做詞向量相加
- Relationship Classifer
relationship classifier 訓練(relationship_algorithm_analysis) > 供給 server 存取(main) - Scenario Classifier
scenario classifier 訓練(scenario_algorithm_analysis) > 供給 server 存取(main)
目的:NER 運用(Insert Article, Movie Parser and Article, Movie NER), Server 架設
執行:activator "start 8309"(註:java project)
目的:存取模型結果, Server 架設
執行:python3 server.py(註:python project)
執行:python3 service_Server.py(註:python project)
目的:訓練 Entity2Vec-BERT, Entity2Vec-W2V-SG, Word2Vec-W2V-SG(baseline) 並將 relationship feature and scenario feature 存入
目的:訓練 relationship 模型(CNN)
目的:訓練 scenario 模型(KNN, NB, SVM, RFC)
目的:給予評分項目,產生評估結果
目的:產生 relationship lexicon(person), emotion lexicon(emotion), time lexicon(time), location lexicon(location)and event 辭典
目的:爬蟲, 存取資料庫, CKIP Parser
目的:爬蟲, 存取資料庫, CKIP Parser
目的:測試資料用
目的:推薦系統介面
目的:評估系統介面