-
Notifications
You must be signed in to change notification settings - Fork 26
/
costmodel.scala
544 lines (454 loc) · 24.2 KB
/
costmodel.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*************************************************************************
* *
* This file is part of the 20n/act project. *
* 20n/act enables DNA prediction for synthetic biology/bioengineering. *
* Copyright (C) 2017 20n Labs, Inc. *
* *
* Please direct all queries to act@20n.com. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
* *
*************************************************************************/
package act.installer.bing
import squants.time.Time
import squants.time.Days
import squants.mass.Mass
import squants.mass.Kilograms
import squants.space.Volume
import squants.space.Litres
import squants.Dimensionless
import squants.market.Money
import squants.market.USD
import squants.market.Price
import squants.Ratio
import squants.LikeRatio
import squants.thermal.Temperature
import squants.mass.Density
// these provide implicit converters such as
// (XX dollars) (XX days) (XX kg) (XX liters) etc.
import squants.time.TimeConversions.TimeConversions
import squants.mass.MassConversions.MassConversions
import squants.space.VolumeConversions.VolumeConversions
import squants.DimensionlessConversions.DimensionlessConversions
import squants.market.MoneyConversions.MoneyConversions
import squants.thermal.TemperatureConversions.TemperatureConversions
// Getting (XX millions) i.e., a dimensionless multiplier has
// different exporting consideration than the other conversions above
// The below _ imports `lazy val millions` from https://github.com/garyKeorkunian/squants/blob/master/shared/src/main/scala/squants/Dimensionless.scala#L111
// TODO is there a better way to import?
import squants.DimensionlessConversions._
import scala.math.sinh
import org.apache.commons.cli.{CommandLine, DefaultParser, HelpFormatter, Options, ParseException, Option => CliOption}
import org.apache.logging.log4j.LogManager
case class Yield(base: Mass, counter: Mass) extends LikeRatio[Mass]
case class Titer(base: Mass, counter: Volume) extends Ratio[Mass, Volume] {
def *(that: Volume): Mass = base * (that.value / counter.value)
def /(that: Titer): Double = (base.value / that.base.value) * (that.counter.value / counter.value)
def gPerL = this.convertToBase(1.0 liters).toGrams
}
class CostModel {
type KiloWattPerMeterCubed = Double
type KiloJoulePerMMol = Double
type MMolPerLiterHour = Double
/********************************************************************************************
* Unit Conversions
********************************************************************************************/
def waterDensity: Density = (1 kg) / (1 liters)
def brothDensity: Density = waterDensity
def VolumeToMass(x: Volume): Mass = brothDensity * x
def MassToVolume(x: Mass): Volume = {
val massInOneLiter: Mass = brothDensity * (1 liters)
val litersToHoldInputMass = x / massInOneLiter
Litres(litersToHoldInputMass)
}
/********************************************************************************************
* Constants
********************************************************************************************/
val defaultFermRunTime: Time = 10 days
val defaultBrothMassPerBatch: Mass = VolumeToMass(360 cubicMeters)
def literDay(v: Volume, t: Time): Double = {
v.toLitres * t.toDays
}
/************************************ Fermentation ****************************************/
// Productivity and Titer
val vesselSize: Volume = 200 cubicMeters
val pcOfVesselUsed: Dimensionless = (90.0 / 100.0) percent
val operationalTimePerYear: Time = 350 days // all plants have two week downtime, so 365-14 days
val fermTemp: Temperature = 25 C
val hoursForCIP: Time = 12 hours // Clean In Place
val finalDryCellWeight: Ratio[Mass, Mass] = mediaElem(170 g)
val fermenterAspect: Double = 3.0 // height/diameter
// Compressor Power
val airFlow: Double = 2.0
// Agitator Power
val agitationRate: KiloWattPerMeterCubed = 0.75
// Microbial Heat
val oxygenUptakeRate: MMolPerLiterHour = 120.0 // OUR in mmol O2/L/hr
val microbialHeatGen: KiloJoulePerMMol = 0.52 // kJ/mmol O2
// Ammonia Use
val ammoniaPerGlucose: Dimensionless = (6.0 / 100.0) percent
// Steam Use
val initialTemp: Temperature = 20 C
val sterilizedTemp: Temperature = 121 C
// Labor
val numOfEmployees: Integer = 14
// Capital
val DepreciationLife: Time = (15 * 365) days
// Media composition and unit prices
sealed trait MediaComp { def n: String; def amount: Ratio[Mass, Mass]; def cost: Price[Mass] }
case class mediaElem(traceAmount: Mass) extends Ratio[Mass, Mass] {
def base = traceAmount
def counter = 1 kg
def *(that: Price[Mass]): Price[Mass] = Price(that * traceAmount, counter)
}
def alibaba(price: Double): Price[Mass] = USD(price) / Kilograms(1)
case object KH2PO4 extends MediaComp { val n = "KH2PO4"; val amount = mediaElem(08.0 g); val cost = alibaba(1.05) }
case object MgSO47H2O extends MediaComp { val n = "MgSO4.7H2O"; val amount = mediaElem(06.0 g); val cost = alibaba(0.10) }
case object NH42SO4 extends MediaComp { val n = "(NH4)2 SO4"; val amount = mediaElem(15.0 g); val cost = alibaba(0.09) }
case object EDTA extends MediaComp { val n = "EDTA"; val amount = mediaElem(800 mg); val cost = alibaba(1.00) }
case object FeSO47H2O extends MediaComp { val n = "FeSO4.7H2O"; val amount = mediaElem(28 mg); val cost = alibaba(0.30) }
case object ZnSO47H2O extends MediaComp { val n = "ZnSO4.7H2O"; val amount = mediaElem(57.5 mg);val cost = alibaba(0.45) }
case object CaCl22H2O extends MediaComp { val n = "CaCl2.2H2O"; val amount = mediaElem(29 mg); val cost = alibaba(0.14) }
case object CuSO4 extends MediaComp { val n = "CuSO4 "; val amount = mediaElem(3.2 mg); val cost = alibaba(2.60) }
case object Na2MoO42H2O extends MediaComp { val n = "Na2MoO4.2H2O"; val amount = mediaElem(4.8 mg); val cost = alibaba(12.00) }
case object CoCl26H20 extends MediaComp { val n = "CoCl2.6H20"; val amount = mediaElem(4.7 mg); val cost = alibaba(9.00) }
case object MnCl24H2O extends MediaComp { val n = "MnCl2.4H2O"; val amount = mediaElem(3.2 mg); val cost = alibaba(1.50) }
case object Biotin extends MediaComp { val n = "Biotin"; val amount = mediaElem(0.6 mg); val cost = alibaba(0.50) }
case object CaPantothe extends MediaComp { val n ="CaPantothenate";val amount = mediaElem(12 mg); val cost = alibaba(20.00) }
case object NicotinicAc extends MediaComp { val n = "NicotinicAcid";val amount = mediaElem(12 mg); val cost = alibaba(15.00) }
case object Myoinositol extends MediaComp { val n = "Myoinositol"; val amount = mediaElem(30 mg); val cost = alibaba(9.00) }
case object ThiamineHCl extends MediaComp { val n = "ThiamineHCl"; val amount = mediaElem(12 mg); val cost = alibaba(35.00) }
case object PyroxidolHC extends MediaComp { val n = "PyroxidolHCl"; val amount = mediaElem(12 mg); val cost = alibaba(20.00) }
val allMediaComponents = List(KH2PO4, MgSO47H2O, NH42SO4, EDTA, FeSO47H2O, ZnSO47H2O, CaCl22H2O, CuSO4, Na2MoO42H2O, CoCl26H20, MnCl24H2O, Biotin, CaPantothe, NicotinicAc, Myoinositol, ThiamineHCl, PyroxidolHC)
val unitCostOfMedia = allMediaComponents.map(x => x.amount * x.cost).reduce(_ + _)
case object Ammonia { val n = "Ammonia"; val cost = alibaba(1.00) }
case object Glucose { val n = "Glucose"; val cost = alibaba(0.32) }
case object Antifoam { val n = "Antifoam"; }
/********************************************************************************************
* Sensible defaults and external caller
********************************************************************************************/
var strainTiter: Titer = Defaults.defaultTiter;
var strainYield: Yield = Defaults.defaultYield;
var operationMode: Defaults.OperationMode = Defaults.defaultOperationMode
var fermRunTime: Time = defaultFermRunTime;
var brothMassPerBatch: Mass = defaultBrothMassPerBatch
var location: Defaults.Location = Defaults.defaultLocation;
def getPerTonCost(y: Double, t: Double): Double = {
val cost: Price[Mass] = getPerTonCost(Yield(y grams, 100 grams), Titer(t grams, 1 litres),
Defaults.defaultOperationMode, Defaults.defaultLocation)
cost.convertToBase(1 tonnes).value
}
def getPerTonCost(yield_is: Yield, titer_is: Titer, mode: Defaults.OperationMode, location_is: Defaults.Location): Price[Mass] = {
strainTiter = titer_is
strainYield = yield_is
location = location_is
val fermCost = mode match {
case Defaults.CMOS => costWithCMOs
case Defaults.BYOP => costWithBYOPlant
}
val dspCost = mode match {
case Defaults.CMOS => dspCostWithCMOs
case Defaults.BYOP => dspCostWithBYOPlant
}
val cost = fermCost + dspCost
cost
}
/********************************************************************************************
* Consumptions and cost per batch
********************************************************************************************/
def workingVolume: Volume = vesselSize * pcOfVesselUsed.value
def finalByInitialVol: Double = brothMassPerBatch.value / VolumeToMass(workingVolume).value
def literDaysPerBatch = literDay(vesselSize, fermRunTime)
def productPerBatch: Mass = strainTiter * MassToVolume(brothMassPerBatch)
def glcConsumedPerBatch: Mass = strainYield.inverseRatio * productPerBatch
def glcBatchedPerBatch: Mass = 0 grams // Glc in media = 0kgs: TODO: check if this is correct
def glcFedPerBatch: Mass = glcConsumedPerBatch - glcBatchedPerBatch
def ammoniaUsedPerBatch: Mass = glcConsumedPerBatch * ammoniaPerGlucose.value
def mediaPerBatch: Money = unitCostOfMedia * brothMassPerBatch
def glcPerBatch: Money = Glucose.cost * glcFedPerBatch
def ammoniaPerBatch: Money = Ammonia.cost * ammoniaUsedPerBatch
def consumablesPerBatch: Money = mediaPerBatch + glcPerBatch + ammoniaPerBatch
/********************************************************************************************
* Rental Model: Cost with CMOs
********************************************************************************************/
def costWithCMOs(): Price[Mass] = {
val rentPerBatch = location.rentalRate * literDaysPerBatch
// brothvol = working vol + num_draws * (working vol)/2 => num_draws = 2(brothvol/working - 1)
def numDraws: Double = 2 * (finalByInitialVol - 1)
// final volume depends on num of draws, and there cannot be more than one draw a day (can there?)
// which puts an upper bound on the final volume you can extract from a fermentation over x days
// Do a sanity check that we did not get a input "final volume" which is insane compared to runtime
assert(numDraws <= (fermRunTime in Days).value)
val costPerBatch: Money = consumablesPerBatch + rentPerBatch
val costPerTon: Price[Mass] = costPerBatch / productPerBatch
costPerTon
}
// Note: The TODOs that remain below need to be filled out from Tim Revak's models under
// MNT_SHARED_DATA/Tim Revak/Cost Models/20n COG, v2 25JUL16.xlsx
/********************************************************************************************
* Bottom Up Model: Cost with Build Your Own Plant
********************************************************************************************/
def costWithBYOPlant(): Price[Mass] = {
// TODO fill out the cost model for Build Your Own Plant
throw new UnsupportedOperationException()
val electrical: Money = USD(0)
val cooling: Money = USD(0)
val steam: Money = USD(0)
val labor: Money = USD(0)
val depreciation: Money = USD(0)
val costPerBatch: Money = consumablesPerBatch + electrical + cooling + steam + labor + depreciation
val costPerTon: Price[Mass] = costPerBatch / productPerBatch
costPerTon
}
def dspCostWithCMOs(): Price[Mass] = {
// TODO: fill out the cost model for CMO for dsp
(2000 dollars) / (1 tonnes)
}
def dspCostWithBYOPlant(): Price[Mass] = {
// TODO: fill out the cost model for Build Your Own Plant for dsp
(2000 dollars) / (1 tonnes)
}
}
object Defaults {
// Default titers and yields are instances for Shikimate from review paper:
// "Recombinant organisms for production of industrial products"
// --- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026452
val defaultYield: Yield = Yield(31.9 grams, 100 grams) // 31.9% g/g
val maxYield: Yield = Yield(60 grams, 100 grams) // 60% g/g
val defaultTiter: Titer = Titer(84 grams, 1 litres) // 84 g/L
val maxTiter: Titer = Titer(200 grams, 1 liters) // 170g/L is probably the max that has ever been accomplished
val defaultPricePerTon: Money = USD(5547) // current price of acetaminophen, from market report in MNT_SHARED_DATA/Reports and Documents/Market Reports/Global Acetaminophen Industry Report 2015 (02_15_2016).pdf
sealed abstract class OperationMode
case object CMOS extends OperationMode
case object BYOP extends OperationMode
val defaultOperationMode: OperationMode = CMOS // BYOP
sealed trait Location { def name: String; def rentalRate: Money }
def cmoRate(centsPerLiterDay: Double): Money = { USD(centsPerLiterDay / 100.00) }
// See email thread "Model" between for cost quotes from various places
case object GER extends Location { val name = "Germany"; val rentalRate = cmoRate(5.0) }
case object ITL extends Location { val name = "Italy"; val rentalRate = cmoRate(8.0) }
case object IND extends Location { val name = "India"; val rentalRate = cmoRate(10.0) }
case object CHN extends Location { val name = "China"; val rentalRate = cmoRate(5.3) }
case object MID extends Location { val name = "Midwest"; val rentalRate = cmoRate(8.3) }
case object MEX extends Location { val name = "Mexico"; val rentalRate = cmoRate(8.3) }
val defaultLocation: Location = GER
val allLocations: List[Location] = List(GER, ITL, IND, CHN, MID, MEX)
}
class InvestModel {
var strainTiter: Titer = Defaults.defaultTiter;
var strainYield: Yield = Defaults.defaultYield;
val maxProjectTime: Time = (365 * 10) days
val maxProjectInvestment: Money = USD(20 million)
def getInvestmentRequired(yield_is: Yield, titer_is: Titer): (Money, Time) = {
strainTiter = titer_is
strainYield = yield_is
getInvestment()
}
def asymptoticCurve(normYield: Double, normTiter: Double): Double = {
// a resonable approximation would be 0.02\sinh(8x-3.9)+0.5 (between (0,0) and (1,1)
def curve(x: Double) = { 0.02 * sinh(8 * x - 3.9) + 0.5 }
// From observations, we know titer is the predominant cost,
// For now, we compute a return based on the average of the normalized yield and titer values
// TODO: we could potentially skew that mean towards titer (with a weighted mean) to reflect its predominance
curve((normTiter + normYield) / 2)
}
def cost(normYield: Double, normTiter: Double): Money = {
maxProjectInvestment * asymptoticCurve(normYield, normTiter)
}
def time(normYield: Double, normTiter: Double): Time = {
maxProjectTime * asymptoticCurve(normYield, normTiter)
}
def getInvestment(): (Money, Time) = {
// want to return the inverse shape of (1+\tanh(4x-2)) / 2 (has a good asymptotic form between (0,0) to (1,1)
// a resonable approximation would be 0.02\sinh(8x-3.9)+0.5 (between (0,0) and (1,1)
val normYield = strainYield.ratio / Defaults.maxYield.ratio // gives us a number between [0,1]
val normTiter = strainTiter / Defaults.maxTiter // gives us a number between [0,1]
(cost(normYield, normTiter), time(normYield, normTiter))
}
}
class ROIModel {
var strainTiter: Titer = Defaults.defaultTiter;
var strainYield: Yield = Defaults.defaultYield;
var productPrice: Money = Defaults.defaultPricePerTon;
val yearsToFullScale: Int = 3
val volume: Mass = 1000 tonnes
val startingVolume: Mass = 100 tonnes
val rate = (10 / 100) percent
// Calculate the Net Present Value: https://en.wikipedia.org/wiki/Net_present_value
// An estimate of how much this money would be worth over a period
def getNPV(invested: Money, profits: List[Money]): Money = {
// TODO: Change the NPV calculation to use Danielle's model
// MNT_SHARED_DATA/Danielle/Final Docs/Other Stuff/Molecule NPV.xlsx
def discountfn(yrProfit: (Money, Int)) = yrProfit._1 / math.pow(1 + rate.value, 1.0 * yrProfit._2)
val discountedProfits = profits.zip(1 until profits.length).map(discountfn)
discountedProfits.reduce(_ + _)
}
def getROI(): (Money, Dimensionless) = getROI(Defaults.defaultYield, Defaults.defaultTiter,
Defaults.defaultPricePerTon, Defaults.defaultOperationMode, Defaults.defaultLocation)
def getROI(yield_is: Yield, titer_is: Titer, marketPricePerTon: Money,
mode: Defaults.OperationMode, location: Defaults.Location): (Money, Dimensionless) = {
strainTiter = titer_is
strainYield = yield_is
productPrice = marketPricePerTon
val productionPrice: Price[Mass] = new CostModel().getPerTonCost(yield_is, titer_is, mode, location)
val productionPricePerTon: Money = productionPrice * (1 tonnes)
val profitPerTon: Money = marketPricePerTon - productionPricePerTon
val eventualProfit: Money = profitPerTon * BigDecimal(volume.value)
val startingProfit: Money = profitPerTon * BigDecimal(startingVolume.value)
// not counting the start and end year, we calculate what the
// step in Money needs to be at every intermediate year.
val step: Money = (eventualProfit - startingProfit) / (yearsToFullScale - 2)
val stepNum = yearsToFullScale
val profitRamp: List[Money] = (0 to stepNum - 1).toList.map(BigDecimal(_) * step + startingProfit)
val investmentNeed: (Money, Time) = new InvestModel().getInvestmentRequired(strainYield, strainTiter)
val invested: Money = investmentNeed._1
val npv = getNPV(invested, profitRamp)
val gain: Money = profitRamp.reduce(_ + _)
val roi: Dimensionless = ((gain - invested).value / invested.value) percent
(npv, roi)
}
}
object ExploreRange {
val costmodel = new CostModel()
val investmodel = new InvestModel()
val roimodel = new ROIModel()
sealed abstract class OutFormat
case object OutHuman extends OutFormat
case object OutTSV extends OutFormat
val HELP_FORMATTER: HelpFormatter = new HelpFormatter
val HELP_MESSAGE = ""
HELP_FORMATTER.setWidth(100)
private val logger = LogManager.getLogger(getClass.getName)
def main(args: Array[String]) {
val cl = parseCommandLineOptions(args)
// market price USD/ton of product
val p = USD(cl.getOptionValue(OPTION_MARKET_PRICE).toDouble)
val mode = cl.getOptionValue(OPTION_MODE) match {
case "CMOS" => Defaults.CMOS
case _ => Defaults.BYOP
}
val outformat = cl.getOptionValue(OPTION_OUTFORMAT) match {
case "Readable" => OutHuman
case _ => OutTSV
}
// Print the header
val hdr = outformat match {
case OutHuman => List("Yield", "Titer", "Investment", "COGS", "ROI").mkString("\t")
case OutTSV => List("Yield(%)", "Titer(g/L)", "Invest($$M)", "Invest(Yr)", "COGS($$/T)", "Sell Price($$/T)", "NPV($$M)", "ROI(%)").mkString("\t")
}
println(hdr)
for (titerv <- 1.0 to Defaults.maxTiter.gPerL by 20.0) {
for (yieldv <- 1.0 to (100 * Defaults.maxYield.ratio) by 10.0) {
val y = Yield(yieldv grams, 100 grams)
val t = Titer(titerv grams, 1 litres)
val investment: (Money, Time) = investmodel.getInvestmentRequired(y, t)
val cogs: Price[Mass] = costmodel.getPerTonCost(y, t, mode, Defaults.defaultLocation)
val roi: (Money, Dimensionless) = roimodel.getROI(y, t, p, mode, Defaults.defaultLocation)
outformat match {
case OutHuman => {
println(s"$y $t $investment $cogs $roi")
}
case OutTSV => {
val yieldPc = y.ratio * 100
val titerGPerL = t.gPerL
val investMillions = investment._1.value / 1e6
val investYears = investment._2.value / 365
val cogsForTon = cogs.convertToBase(1.0 tonnes).value
val priceForTon = p.value
val npv = roi._1.value / 1e6
val roiPc = roi._2.value * 100
println(f"$yieldPc%2.2f\t$titerGPerL%2.2f\t$investMillions%2.2f\t$investYears%.2f\t$cogsForTon%.2f\t$priceForTon%.2f\t$npv%.2f\t$roiPc%.2f")
}
}
}
}
}
def getOutcomeVsYieldTable(titer: Double, price: Double, mode: String, location: String): String = {
val t = Titer(titer grams, 1 liters)
val p = USD(price)
val m = mode match {
case "CMOS" => Defaults.CMOS
case _ => Defaults.BYOP
}
val l: Defaults.Location = Defaults.allLocations.find(_.name.equals(location)).get
val header = List("Yield", "NPV", "ROIPercent", "COGS", "InvestM", "InvestY").mkString("\t")
val rows = for (yieldv <- 1.0 to 100 by 1.0) yield {
val y = Yield(yieldv grams, 100 grams)
val investment: (Money, Time) = investmodel.getInvestmentRequired(y, t)
val cogs: Price[Mass] = costmodel.getPerTonCost(y, t, m, l)
val roi: (Money, Dimensionless) = roimodel.getROI(y, t, p, m, l)
val yieldPc = y.ratio * 100
val investMillions = investment._1.value / 1e6
val investYears = investment._2.value / 365
val cogsForTon = cogs.convertToBase(1.0 tonnes).value
val npv = roi._1.value / 1e6
val roiPc = roi._2.value * 100
f"$yieldPc%2.2f\t$npv%.2f\t$roiPc%.2f\t$cogsForTon%.2f\t$investMillions%.2f\t$investYears%.2f"
}
val contents = header :: rows.toList
contents.mkString("\n")
}
private val OPTION_MARKET_PRICE = "p"
private val OPTION_MODE = "m"
private val OPTION_OUTFORMAT = "f"
def parseCommandLineOptions(args: Array[String]): CommandLine = {
val opts = getCommandLineOptions
// Parse command line options
var cl: Option[CommandLine] = None
try {
val parser = new DefaultParser()
cl = Option(parser.parse(opts, args))
} catch {
case e: ParseException =>
logger.error(s"Argument parsing failed: ${e.getMessage}\n")
exitWithHelp(opts)
}
if (cl.isEmpty) {
logger.error("Detected that command line parser failed to be constructed.")
exitWithHelp(opts)
}
if (cl.get.hasOption("help")) exitWithHelp(opts)
logger.info("Finished processing command line information")
cl.get
}
def getCommandLineOptions: Options = {
val options = List[CliOption.Builder](
CliOption.builder(OPTION_MARKET_PRICE).
required(true).
hasArg.
longOpt("market-price").
desc("The market price, in $$/T, used as a model input."),
CliOption.builder(OPTION_MODE).
required(true).
hasArg.
longOpt("mode").
desc("The operation mode, CMO-based or Build Your Own Plant, CMOS or BYOP, respectively to derive the cost model for."),
CliOption.builder(OPTION_OUTFORMAT).
required(true).
hasArg.
longOpt("output-format").
desc("The output format, one of Readable or TSV."),
CliOption.builder("h").argName("help").desc("Prints this help message").longOpt("help")
)
val opts: Options = new Options()
for (opt <- options) {
opts.addOption(opt.build)
}
opts
}
def exitWithHelp(opts: Options): Unit = {
HELP_FORMATTER.printHelp(this.getClass.getCanonicalName, HELP_MESSAGE, opts, null, true)
System.exit(1)
}
}