forked from justld/ENCNet_paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
val.py
171 lines (144 loc) · 5.13 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import paddle
from paddleseg.cvlibs import manager, Config
from paddleseg.core import evaluate
from paddleseg.utils import get_sys_env, logger, config_check, utils
def get_test_config(cfg, args):
test_config = cfg.test_config
if args.aug_eval:
test_config['aug_eval'] = args.aug_eval
test_config['scales'] = args.scales
if args.flip_horizontal:
test_config['flip_horizontal'] = args.flip_horizontal
if args.flip_vertical:
test_config['flip_vertical'] = args.flip_vertical
if args.is_slide:
test_config['is_slide'] = args.is_slide
test_config['crop_size'] = args.crop_size
test_config['stride'] = args.stride
return test_config
def parse_args():
parser = argparse.ArgumentParser(description='Model evaluation')
# params of evaluate
parser.add_argument(
"--config", dest="cfg", help="The config file.", default=None, type=str)
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for evaluation',
type=str,
default=None)
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
# augment for evaluation
parser.add_argument(
'--aug_eval',
dest='aug_eval',
help='Whether to use mulit-scales and flip augment for evaluation',
action='store_true')
parser.add_argument(
'--scales',
dest='scales',
nargs='+',
help='Scales for augment',
type=float,
default=1.0)
parser.add_argument(
'--flip_horizontal',
dest='flip_horizontal',
help='Whether to use flip horizontally augment',
action='store_true')
parser.add_argument(
'--flip_vertical',
dest='flip_vertical',
help='Whether to use flip vertically augment',
action='store_true')
# sliding window evaluation
parser.add_argument(
'--is_slide',
dest='is_slide',
help='Whether to evaluate by sliding window',
action='store_true')
parser.add_argument(
'--crop_size',
dest='crop_size',
nargs=2,
help=
'The crop size of sliding window, the first is width and the second is height.',
type=int,
default=None)
parser.add_argument(
'--stride',
dest='stride',
nargs=2,
help=
'The stride of sliding window, the first is width and the second is height.',
type=int,
default=None)
parser.add_argument(
'--data_format',
dest='data_format',
help=
'Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".',
type=str,
default='NCHW')
return parser.parse_args()
def main(args):
env_info = get_sys_env()
place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
'GPUs used'] else 'cpu'
paddle.set_device(place)
if not args.cfg:
raise RuntimeError('No configuration file specified.')
cfg = Config(args.cfg)
# Only support for the DeepLabv3+ model
if args.data_format == 'NHWC':
if cfg.dic['model']['type'] != 'DeepLabV3P':
raise ValueError(
'The "NHWC" data format only support the DeepLabV3P model!')
cfg.dic['model']['data_format'] = args.data_format
cfg.dic['model']['backbone']['data_format'] = args.data_format
loss_len = len(cfg.dic['loss']['types'])
for i in range(loss_len):
cfg.dic['loss']['types'][i]['data_format'] = args.data_format
val_dataset = cfg.val_dataset
if val_dataset is None:
raise RuntimeError(
'The verification dataset is not specified in the configuration file.'
)
elif len(val_dataset) == 0:
raise ValueError(
'The length of val_dataset is 0. Please check if your dataset is valid'
)
msg = '\n---------------Config Information---------------\n'
msg += str(cfg)
msg += '------------------------------------------------'
logger.info(msg)
model = cfg.model
if args.model_path:
utils.load_entire_model(model, args.model_path)
logger.info('Loaded trained params of model successfully')
test_config = get_test_config(cfg, args)
config_check(cfg, val_dataset=val_dataset)
evaluate(model, val_dataset, num_workers=args.num_workers, **test_config)
if __name__ == '__main__':
args = parse_args()
main(args)